Rodolphe Tchalekian 介绍了 ESI Group 的模拟软件 Pro-SiVIC 如何为机器学习算法的测试与训练而创造逼真的实时 3D 虚拟环境。
想为自动驾驶创建新的机器学习算法,就需要大量的训练数据集。如果从真实世界中收集这些数据,就必须先为这些数据加上标签,然后自动驾驶算法才能进行消化并从中学习。然而,模拟数据可以在创建时自动加上标签,这样可以节省大量时间。
利用合成数据集训练新算法之后,ESI 会使用 DRIVE PX 验证它能否正常工作。
TASS 利用 DRIVE PX 在模拟驾驶环境中测试车道保持能力
来自 TASS International 的 Martijn Tideman 在 GTC 欧洲大会的一场分会上重点介绍了他们 PreScan 模拟平台。PreScan 是一个基于物理性质的模拟平台,用于评估自动驾驶和其他汽车应用程序。
过去,PreScan 一直用于测试驾驶员辅助功能以及车辆与车辆之间的通信功能。最近,TASS 已使用 PreScan 数据来训练和验证自动驾驶所需的深度学习算法。
Tideman 分享了与德国人工智能研究中心及西门子公司合作完成的项目的成果,展示了合成数据对于深度学习的价值。该项目得出的结论是,在训练深度学习驾驶算法时,向真实数据中增加合成数据比单独使用真实数据更有效。
继在慕尼黑举办的大会之后,NVIDIA 主持召开了 GPU 技术大会以色列场开幕式。模拟初创公司 Cognata 向由五个裁判组成的评审团介绍了其业务战略,最终赢得NVIDIA人工智能初创公司挑战赛。
Cognata 利用获得专利的算法,打造具有逼真车辆以及行人行为的模拟城市。该公司还在模拟环境中重现传感器数据,应用深度学习以确保模拟传感器的运作方式与在真实世界中完全相同。
从训练到测试,模拟都在改善自动驾驶成果。它不仅节省了训练过程所用的时间,而且提高了性能,并且有助于真实世界中相对不安全或不可行的测试场景。
人类驾驶员在实际道路上评估新自动驾驶技术的效果依然是必要的。但我们同样可以通过模拟来补充真实世界的驾驶时数,让道路对所有驾驶者来说都更加安全。
免责声明:科技狗对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。 本网站转载图片、文字之类版权申明,本网站无法鉴别所上传图片或文字的知识版权,如果侵犯,请及时通知我们,本网站将在第一时间及时删除:yzl_300@126.com