挑战空间
十年前,博伊金说,很多从事物理学研究的朋友们喜欢踏足金融世界。在华尔街,同样的数学风格对于预测市场走向也是非常有用的。一个关键的方法是布莱克-肖尔斯期权定价模型Black-Scholes,它是确定金融衍生品价值的重要方法。然而正是布莱克-肖尔斯期权定价模型推动了2008年的金融海啸。现在,博伊金和其他物理学家纷纷表示,更多的同事正在转向数据科学和其他类型的计算机技术。
早些时候,物理学家跳槽到一些顶级科技公司,帮助开发所谓的“大数据”软件,从而在数百甚至数千台机器上进行数据处理。在Twitter,博伊金帮忙开发了一个名为Summingbird的系统,而麻省理工学院物理系的三位物理学家为一家名为Cloudant的初创公司开发了类似的软件。物理学家清楚如何处理数据——Cloudant的创始人此前的工作就是处理大型强子对撞机的大量数据集——开发这些极其复杂的系统需要开发人员具备相当的抽象思维。当这些系统建成之后,很多物理学家都会利用自己所掌握的数据使用这些系统。
在谷歌成立早期,为公司机房开发大规模分布式系统的关键人物之一是Yonatan Zunger,其拥有斯坦福大学的弦理论博士学位。当凯文·斯科特(Kevin Scott)加入谷歌广告营销团队时,主要负责收集来自谷歌各地的数据,并用它来预测哪些广告最有可能获得更多的点击次数。为此斯科特招聘了大量的物理学家,与许多计算机科学家不同,他们掌握的技能非常适合机器学习。“这几乎就像实验室科学,”Scott现任首席技术官表示。
现在大数据软件已经司空见惯,Stripe就使用了博伊金所帮忙开发的开源系统,这一开源系统也帮助很多公司的机器学习模型提高预测能力。这为硅谷的物理学家提供了更广阔的发展前景。在Stripe,博伊金与Roban Kramer(物理学博士,哥伦比亚大学),Christian Anderson(哈佛大学物理学硕士)以及Kelley Rivoire(物理学学士,麻省理工学院)等诸多物理学家一起工作。他们发现自己很适应硅谷的工作,而且这里的薪酬更高。正如博伊金所说的那样:“工资高的离谱。”但他们来这里工作也是因为有这么多的难题要解决。
未来
今天,物理学家正在进入硅谷公司。未来几年,他们将接管硅谷。机器学习不仅会改变世界分析数据的方式,还会改变软件的构建方式。神经网络已经在重塑图像识别,语音识别,机器翻译以及软件接口的基础。正如微软的Chris Bishop所言,软件工程正在从基于逻辑的手工代码转向基于概率和不确定性的机器学习模型。像谷歌和Facebook这样的公司正开始以这种新的思维方式重新培养自己的工程师。最终,计算机世界的其他领域也将纷纷效仿。
换句话说,越来越多的物理学家进入硅谷标志着计算机行业的重大变化,很快所有的硅谷工程师都会是物理学家。
免责声明:科技狗对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。 本网站转载图片、文字之类版权申明,本网站无法鉴别所上传图片或文字的知识版权,如果侵犯,请及时通知我们,本网站将在第一时间及时删除:yzl_300@126.com